

Which structure and composition of agricultural land-use mosaics to enhance multiple services provided by arable weeds?

Séverin Yvoz, Stéphane Cordeau, Sandrine Petit

Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France

 Arable weeds = interesting component of agricultural landscapes as they can potentially be harmful to crop production but also support organisms delivering pollination and pest control services

Harmfulness Services Competition Harvest difficulty Future infestations Parasitoids Soil seedbank Natural ennemies

- Weed contribution to harmfulness and services was computed with 9 indicators that accounted for intraspecific variations in response to growing conditions, i.e. crop type and location within the field (Yvoz et al., 2021 - EcolInd)
- → Here, we explore to what extent changes in the structure and the composition of the land-use mosaics could improve the trade-offs between harmfulness and services provided by weeds

Results

 638 simulated mosaics were located on the Pareto frontier and classified into 4 groups according to their contribution to services and harmfulness

- ➤ There are **antagonisms** between the weed contribution to services and to harmfulness and their stability
- Land-use mosaics composed of **many** contrasted crop management **strategies** expressed the best compromise (*i.e.* medium level of services and harmfulness and high stability). This highlights **complementarities** between **crop types** and **crop management strategies**
- ➤ Decreasing field size, i.e. increasing the area of field edges in the landscape, did not improve trade-offs.

Materials & Methods

Simulation of 72,000 land-use mosaics varying by the average field size (structure) and the proportion of 8 contrasted crop management strategies (varying by the crop sequence and the farming practices implemented)

➤ Random allocation of the 9 proxies depending on the crop type, the strategy and the within-field location and identification of the mosaics expressing the best compromise by a Pareto frontier analysis

Group	Α	В	С	D
Number of mosaics on the Pareto frontier	249	48	181	160
Multifunctionality				
Services	0.45 d	0.40 c	0.29 b	0.13 a
-Harm	0.35 a	0.60 с	0.57 b	0.79 d
Stability	0.34 b	0.12 a	0.35 b	0.34 b
Structure				
% big fields	36.9	79.2	48.1	48.1
% medium fields	31.3	18.8	33.1	34.4
% small fields	31.7	2.1	18.8	17.5
Composition				
Number of strategies	1.47	3.25	3.9	4.5
% cover S1	91.7	6.4	37	6
% cover S2	0.1	2.7	3.4	5.8
% cover S3	0.9	7.1	6.2	24.1
% cover S4	5.4	58.4	11.6	7.3
% cover S5	1.1	1.5	25.9	10.9
% cover S6	0.4	19.7	10.3	39
% cover S7	0.3	2.5	3.2	4.4
% cover S8	0.1	1.7	2.4	2.5

